
J
H
E
P
0
4
(
2
0
0
7
)
0
2
2

Published by Institute of Physics Publishing for SISSA

Received: December 20, 2006

Revised: March 16,2007

Accepted: March 21, 2007

Published: April 3, 2007

Stability and leptogenesis in the left-right symmetric

seesaw mechanism

Evgeny Akhmedov,∗ Mattias Blennow, Tomas Hällgren, Thomas Konstandin and

Tommy Ohlsson

Department of Theoretical Physics, School of Engineering Sciences

Royal Institute of Technology (KTH), AlbaNova University Center

Roslagstullsbacken 21, 106 91 Stockholm, Sweden

E-mail: akhmedov@ictp.trieste.it, emb@kth.se, tomashal@kth.se,

konstand@kth.se, tommy@theophys.kth.se

Abstract: We analyze the left-right symmetric type I+II seesaw mechanism, where an

eight-fold degeneracy among the mass matrices of heavy right-handed neutrinos MR is

known to exist. Using the stability property of the solutions and their ability to lead to

successful baryogenesis via leptogenesis as additional criteria, we discriminate among these

eight solutions and partially lift their eight-fold degeneracy. In particular, we find that

viable leptogenesis is generically possible for four out of the eight solutions.

Keywords: Baryogenesis, Neutrino Physics.

∗On leave from the National Research Centre Kurchatov Institute, Moscow, Russia

c© SISSA 2007 http://jhep.sissa.it/archive/papers/jhep042007022/jhep042007022.pdf

mailto:akhmedov@ictp.trieste.it
mailto:emb@kth.se
mailto:tomashal@kth.se
mailto:konstand@kth.se
mailto:tommy@theophys.kth.se
http://jhep.sissa.it/stdsearch


J
H
E
P
0
4
(
2
0
0
7
)
0
2
2

Contents

1. Introduction 1

2. The model and the inversion formula 2

3. Stability analysis 5

3.1 Large µ regime 6

3.2 Hierarchy induced large mixing 8

3.3 Small µ regime 10

3.4 Numerical results 10

4. Leptogenesis 11

5. Summary and conclusions 19

1. Introduction

In recent years, it has become an established fact that neutrinos, though relatively light,

are massive. Since the first experimental evidence of neutrino oscillations until today an

enormous progress has been made in determining the low-energy properties of neutrinos,

such as mass squared differences and mixing. The existence of neutrino masses poses some

fundamental theoretical challenges, such as understanding why the neutrino mass is so

much smaller than the masses of the other fermions. An elegant and attractive solution

to this problem is given by the seesaw mechanism [1 – 9], which explains the smallness

of the neutrino mass through the existence of very heavy particles (usually right-handed

Majorana neutrinos or Higgs triplets), the mass scale of which could be related to that

of Grand Unification. In addition, the seesaw mechanism provides a natural explanation

of the baryon asymmetry of the Universe through the baryogenesis via leptogenesis mech-

anism [10] (for recent reviews, see refs. [11 – 13]). However, the large mass scale of the

seesaw particles jeopardizes the hopes of testing this mechanism in the laboratory and

hence reduces its predictivity.

In the present work, we consider the seesaw mechanism in a class of left-right symmetric

models in which the intermediate states with both right-handed neutrinos (type I) and

heavy triplet scalars (type II) contributions to the light neutrino mass matrix mν are

naturally present. We focus on a special case with a discrete left-right symmetry, in which

type I and type II seesaw contributions contain the same triplet Yukawa coupling f . This
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case has much fewer parameters than the most general one and is therefore more predictive.

After integrating out the heavy particles, the light neutrino mass matrix is given by

mν = f vL − v2

vR
y f−1yT , (1.1)

where f is the triplet Majorana-type Yukawa coupling, y is the Dirac-type Yukawa coupling

of neutrinos and v, vL, and vR are vacuum expectation values (VEVs). The first term in

eq. (1.1) is the type II contribution, while the second term is the type I contribution from

the original seesaw scenario. In the case when y is a complex symmetric matrix, it was

shown in ref. [14] that if the light neutrino mass matrix mν , the VEVs, and the Dirac-type

Yukawa coupling matrix y are known, the seesaw formula (1.1) can be inverted analytically

to find the triplet Yukawa coupling matrix f . Since the seesaw equation is non-linear in f ,

one can expect multiple solutions, and indeed an eight-fold of allowed solutions is found [14].

As the mass matrix of heavy right-handed Majorana neutrinos is given by MR = fvR, this

also implies an eight-fold ambiguity for this mass matrix. For given Dirac-type Yukawa

coupling matrix y and VEVs, all eight solutions for f result in exactly the same mass

matrix of light neutrinos mν , and thus, the seesaw relation by itself does not allow one

to select the true solution among the possible ones. One therefore has to invoke some

additional information and/or selection criteria. The present work is an attempt in this

direction.

One possibility to discriminate among the eight allowed solutions for f is to introduce

a notion of naturalness. For example, for certain ranges of the VEVs and certain solutions,

a very special triplet coupling matrix f might be needed, in the sense that marginally

different f would lead to significantly different low-energy phenomenology. We consider

such a situation unnatural; the degree of tuning that is required in the right-handed sector

to obtain the observed neutrino phenomenology will be quantified and the corresponding

selection criterion for f discussed in section 3.

Another possibility to discriminate among the allowed solutions is to constrain them

by the phenomenology of the right-handed neutrinos. Since the right-handed sector of the

theory is not directly accessible to laboratory experiments, cosmological benchmarks turn

out to be the most promising tool. Namely, we will classify the solutions according to

their ability to lead to successful baryogenesis via leptogenesis. This will be discussed in

section 4, before we draw our conclusions in section 5.

Recently, leptogenesis in a class of models with the left-right symmetric seesaw mech-

anism has been considered in a similar framework in ref. [15]. We compare our results with

those in ref. [15] in sections 4 and 5.

2. The model and the inversion formula

In this section, we introduce our framework and set up the notation. In the basis where the

mass matrix of charged leptons is diagonal, the light neutrino mass matrix can be written

as

mν = (Pl UPMNS Pν)
∗ mdiag

ν (Pl UPMNS Pν)† , (2.1)
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where mdiag
ν = diag(m1, m2, m3) is the diagonal matrix of neutrino masses, UPMNS is

the leptonic mixing matrix which depends on three mixing angles and a Dirac-type CP-

violating phase, and Pl and Pν are diagonal matrices of phase factors, which in general

contain five independent complex phases.

The neutrino masses m1, m2, and m3 can be expressed through the lightest neutrino

mass m0 and the two mass squared differences ∆m2
21 and ∆m2

31. In our numerical calcula-

tions, we will use the current best-fit values of the parameters defining the neutrino mass

matrix [16 – 18]:

∆m2
21 ' 7.9 × 10−5 eV2 , ∆m2

31 ' ±2.6 × 10−3 eV2 , (2.2)

θ12 ' 33.2◦ , θ23 ' 45◦ . (2.3)

For the mixing angle θ13, only the upper limit θ13 . 11.5◦ exists. Unless explicitly stated

otherwise, we will use the value θ13 = 0 in our analysis.

We will be assuming that the Dirac-type Yukawa coupling matrix of neutrinos y coin-

cides with that of the up-type quarks yu. This is a natural choice in the light of quark-lepton

symmetry and grand unified theories (GUTs) [19 – 21]. Actually, this relation is unlikely to

hold exactly, since, in the GUT framework, it would also imply that the Yukawa couplings

of the down-type quarks and charged leptons coincide, yd = yl, in contradiction with ex-

periment. GUT models that modify this relation usually also modify the relation between

the up-type and neutrino Yukawa matrices [22, 23]. However, most of the qualitative re-

sults in the present work depend only on the fact that the eigenvalues of y are hierarchical.

Whenever a result relies on the assumption y = yu, we will comment explicitly on this

issue. Following ref. [14], we will also assume y to be symmetric. In this case, the two

VEVs (vL and vR), the sign of ∆m2
31, and the mass scale of the light neutrinos are the only

free parameters (ignoring for the moment the CP-violating phases, which will be discussed

in section 4).

Our choice of the Dirac-type Yukawa coupling matrix implies that it can be written as

y = Pd UT
CKM Pu ydiag

u Pu UCKM Pd , (2.4)

where the eigenvalues of ydiag
u are

ydiag
u = diag(4.2 × 10−6, 1.75 × 10−3, 0.7) , (2.5)

and we use the standard parameterization of the CKM matrix UCKM [24] with

θq
12 ' 13.0◦, θq

13 ' 0.2◦, θq
23 ' 2.2◦, δq ' 1.05 . (2.6)

The values in eqs. (2.5) and (2.6) are evaluated at the GUT scale, following ref. [15]. The

matrices Pu and Pd in eq. (2.4) are diagonal matrices of phase factors. The phases in the

four matrices Pl, Pν , Pu, and Pd are partially redundant. For example, by a redefinition

of the fields, the three phases of Pl can be moved into Pd, so that we are left with the two

usual Majorana phases and the Dirac phase in the low-energy sector, while five additional

Majorana phases and one Dirac phase reside in y and can only affect high-energy processes
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such as leptogenesis. Even though these phases can marginally influence the stability of

the seesaw solutions, we set the high-energy phases to zero in the first part of our work

and consider them only in the part where leptogenesis is discussed.

In order to invert the seesaw formula, it is useful to introduce the following dimensionful

quantities:

g = vL f , µ =
vR

vL v2
, (2.7)

with the VEV v ' 174 GeV, so that eq. (1.1) turns into

mν = g − 1

µ
y g−1yT . (2.8)

This convention has the advantage that the matrix g will only depend on µ and not on the

two VEVs, vL and vR, separately. It will turn out that the baryon asymmetry produced via

leptogenesis depends only on this combination of VEVs, so that, besides the CP-violating

phases, we are left with two parameters only, the quantity µ and the lightest neutrino mass

m0. The hierarchy of the light neutrino masses can be considered as an additional discrete

parameter.

In the following, we give a short description of the seesaw inversion formula from

refs. [14, 25] in the case of three lepton generations and when y is a complex symmetric

matrix. In the basis where y is diagonal, the seesaw equation for g reduces to the following

system of six coupled non-linear equations for its matrix elements gij :

µG[gij − (mν)ij ] = yiyjGij . (2.9)

Here we use the notation

G ≡ det g, Gij =
1

2

3
∑

k,l,m,n=1

εiklεjmngkmgln . (2.10)

It was found in ref. [14] that in the case when y is symmetric, for every solution g there

exists another solution g̃ which is related to g by the duality transformation g̃ = mν − g.

For g̃, eq. (2.9) reads

µG̃[g̃ij − (mν)ij ] = −µG̃gij = yiyjG̃ij (2.11)

with G̃ ≡ det g̃. The system of equations in eq. (2.9) can now be solved by making use of the

following procedure. First, we introduce the rescaled matrices g′ = g/λ1/3, m′
ν = mν/λ

1/3,

and y′ = y/λ1/3, where λ is to be determined from the equation G′(λ) ≡ det g′(λ) = 1.

Then, using the equation for the dual quantities g̃′, one can linearize the system of equations

for g′ij . Next, this system can be solved and one obtains the following solution for g:

gij =
λ2[(λ2 − Y 2)2 − Y 2λdetmν + Y 4S](mν)ij + λ(λ4 − Y 4)Aij − Y 2λ2(λ2 + Y 2)Sij

(λ2 − Y 2)3 − Y 2λ2(λ2 − Y 2)S − 2Y 2λ3 detmν
,

(2.12)
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where

Y 2 ≡ (y1y2y3)
2

µ3
, S ≡ µ

3
∑

k,l=1

[

(mν)
2
kl

ykyl

]

, Aij ≡
yiyjMij

µ
, (2.13)

Sij ≡ µ
3

∑

k,l=1

[

(mν)ik(mν)jl
(mν)kl

ykyl

]

(2.14)

with Mij = 1
2εiklεjmn(mν)km(mν)ln. In terms of the original (non-rescaled) quantities, one

has G(λ) ≡ det g(λ) = λ, which yields an eighth order equation for λ. Using the duality

property, one can reduce it to a pair of fourth order equations. Substituting the solutions

for λ into eq. (2.12) gives eight solutions for gij. In general, for n lepton generations the

number of solutions is 2n [14].

The matrix structure of the solutions of the seesaw equation was studied in some

detail in ref. [25]. In the present work, we will rather focus on the eigenvalues of the

matrices g, the corresponding mixing parameters, stability properties of the solutions, and

the implications for leptogenesis.

3. Stability analysis

Since the neutrino Dirac-type Yukawa coupling matrix in our framework is given by the

up-type quark mass matrix, the inversion formula of the previous section can be used to

determine the eight allowed structures of the triplet coupling matrix f = g/vL for given low-

energy neutrino mass matrix mν and the parameters vL, vR, and m0. Our stability analysis

is based on the assumption that the Dirac-type coupling matrix y and the Majorana-type

coupling matrix f are a priori independent (for a discussion of the situations when this

is not the case, see section 5 of ref. [25]). We pose the question of whether the resulting

low-energy phenomenology is stable under small changes in f . Since the inversion formula

in general yields eight valid solutions, the mass matrix mν and the corresponding Majorana

coupling matrix f are in a 1-to-8 correspondence. It is still a reasonable question to ask if

for the measured mν some of the predicted f have to be very special, so that a fine-tuning

is required and a small modification of their elements may lead to a large change in (mν)ij .

The measure we use to quantify the stability property of the solutions is the following:

Q =

∣

∣

∣

∣

det f

detmν

∣

∣

∣

∣

1/3
√

√

√

√

2N
∑

k,l=1

(

∂ml

∂fk

)2

. (3.1)

The real coefficients fk and ml determine the matrices f and mν according to

f =
∑

k

(fk + ifk+N )Tk, (3.2)

mν =
∑

k

(mk + imk+N )Tk, (3.3)
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where Tk, k ∈ [1, N ] with N = n(n + 1)/2, form a basis of complex symmetric n × n

matrices. For this basis, we choose the normalization

tr (T †
l Tk) = δlk . (3.4)

The resulting stability measure Q does not depend on the chosen basis. This can be easily

seen in the following way. Consider another basis T ′
k satisfying eq. (3.4). The two bases

are then connected via a unitary transformation T ′
k =

∑

l Ukl Tl. The coefficients in the old

and new bases are determined as

fk = Re
[

tr (T †
k f)

]

, fk+N = Im
[

tr (T †
k f)

]

, (3.5)

f ′
k = Re

[

tr (T ′†
k f)

]

, f ′
k+N = Im

[

tr (T ′†
k f)

]

, (3.6)

and hence, are related by an orthogonal transformation

f ′
a =

∑

b

Oab fb, a, b ∈ [1, 2N ], O =

(

Re U Im U

− Im U ReU

)

, (3.7)

which leaves the measure in eq. (3.1) invariant.1

Many interesting properties of the seesaw inversion formula appear already in the

one-flavor case. The solutions g are then given by

g =
mν

2
±

√

m2
ν

4
+

y2

µ
(3.8)

and our stability measure simplifies to

Q = f
d

df
log |mν | = g

d

dg
log |mν | =

√

1 +
4 y2

µm2
ν

. (3.9)

In the following, we will discuss the qualitative behavior of the solutions f in various regions

of the parameter space and its implications for the stability of these solutions.

3.1 Large µ regime

In the regime of large µ,

µ À 4y2

m2
ν

, (3.10)

the two solutions in the one-flavor case are given by

g → − y2

µmν
and g → mν . (3.11)

In this regime, the solutions are purely type I or type II dominated. In the three-flavor

case, the eight solutions follow from the eight corresponding choices for the eigenvalues and

1Note that the stability issue was also discussed in ref. [15] where a different stability criterion, con-

straining only the element f33, was introduced.
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Figure 1: An example of our labeling convention for the solution ’− + +’.
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Figure 2: The right-handed neutrino masses mNi
and mixing parameters ui as functions of vR/vL

for the solution ’−−−’. Normal mass hierarchy, m0 = 0.001 eV.
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Figure 3: Same as in figure 2, but for the solution ’+ + +’.
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Figure 4: The right-handed neutrino masses mNi
and mixing parameters ui as functions of vR/vL

for the solution ’+ − +’. Inverted mass hierarchy, m0 = 0.001 eV.
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Figure 5: Same as in figure 4, but for the solution ’−− +’.

we will label these solutions according to their limiting behavior at large µ as ’−’ or ’+’ in

the case of type I or type II dominance (starting with the largest eigenvalue in the small µ

regime). This notation agrees with the one used in ref. [15]. Our convention is illustrated

in figure 1 using the solution ’− + +’ as an example.

From eq. (3.9) one can observe that in the large µ regime of the one-flavor case, both

solutions for g are characterized by the stability measure Q ' 1, which is a very stable

situation. Note that for the three-flavor case, no fine-tuning corresponds to Q ' 10.

However, for several flavors and hierarchical y, there is in general an instability related to

mixing that will be discussed in the next subsection.

3.2 Hierarchy induced large mixing

For simplicity, we start with a discussion of the two-flavor case in the pure type I seesaw

framework. By hierarchy induced large mixing we mean the following: Suppose that y has

a hierarchical structure

y ∼
(

ε 0

0 1

)

, (3.12)
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while, in contrast to this, the low-energy neutrino mass has a rather mild or even no hier-

archy. Then, the corresponding matrix g is necessarily characterized by the hierarchy that

is the squared hierarchy of y. Indeed, introducing a unitary matrix U(θ) that diagonalizes

g, one finds

g = − 1

µ
y m−1

ν y = U †(θ) ĝ U∗(θ) (3.13)

with the diagonal matrix

ĝ ∼
(

ε2 0

0 1

)

, (3.14)

and, in addition, mixing has to be small, i.e. θ ∼ ε. This was already observed in refs. [26 –

28] and suggested as a possible mechanism for generating large mixing angles in the light

neutrino mass matrix out of small mixing angles in the right-handed and Dirac sectors.

However, in our context, this is not a desirable situation, since it would require a fine-

tuning between the Dirac and Majorana Yukawa couplings, i.e. between the sectors that

we have assumed to be unrelated. In terms of stability, this would lead to large values of

Q. In addition, the large hierarchy among the elements of the Dirac-type Yukawa coupling

matrix y would induce a huge hierarchy among the elements of g, leading in general to an

extremely small mixing in the right-handed neutrino sector, which may preclude successful

leptogenesis.

The above consideration was based on the type I seesaw formula, and hence, is not

fully applicable to our framework. Still, it applies to the solutions dominated by type I

seesaw. Figure 2 shows the one out of the eight solutions that is fully dominated by the

type I term in the large µ regime and is labeled as ’− − −’. As a measure of mixing, we

consider the parameters ui which are related to the off-diagonal elements of the unitary

matrix U diagonalizing g as follows:2

u2
1 =

1

2
(|U12|2 + |U21|2) , u2

2 =
1

2
(|U13|2 + |U31|2) , u2

3 =
1

2
(|U23|2 + |U32|2) . (3.15)

These parameters, along with the masses of right-handed neutrinos, are plotted for several

solutions in figures 2–5.

For the solution ’− − −’, mixing is small in the large µ regime, as can be seen from

figure 2. For the other seven solutions, this does not hold in general, as can be seen e.g. in

figure 3. However, even in the general case, one feature seems to be universal: If the

matrix elements of g exhibit a strong hierarchy, then the mixing in the right-handed sector

is suppressed, which leads to the necessity of fine-tuning between the Dirac and Majorana

sectors and related instabilities. This also explains why the two solutions ’+ + −’ and

’+ − −’ are very unstable with almost equal stability measure Q. The strong hierarchy

between the largest and smallest right-handed masses leads to large instabilities, while the

behavior of the third mass is rather irrelevant.

2Recall that we work in the basis where the matrix y is diagonal.
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3.3 Small µ regime

When µ is small in the sense that

µ ¿ 4y2

m2
ν

, (3.16)

in the one-flavor case, one finds the following limiting behavior for g:

g → ± y√
µ

+
mν

2
+ O(

√
µ), µ → 0. (3.17)

For the stability measure, eq. (3.9) gives

Q =

∣

∣

∣

∣

g

mν

dmν

dg

∣

∣

∣

∣

→ 2y√
µ mν

→ ∞ (3.18)

in this limit, and therefore a very unstable situation. This had to be expected, since there

is an almost exact cancellation between the type I and type II contributions to mν in the

seesaw formula in this regime. In the multi-flavor case, there is an additional instability in

the small µ limit which stems from the fact that mixing in g is suppressed by the hierarchy

in y. This can be illustrated by the two-flavor case, in which the four solutions are of the

form

g =
1√
µ

y1/2Py1/2 (3.19)

with P of the form

P ∝ ± �
+ O(

√
µ) or P ∝ ±

(

cos α sin α

sinα − cos α

)

+ O(
√

µ). (3.20)

For the first pair of solutions, mixing vanishes in the limit µ → 0, while for the second

pair, mixing in g is suppressed by the hierarchy in y. A similar argument applies to the

three-flavor case and can be observed in our numerical results. For example, this behavior

can be seen in figures 2 and 3 which display two out of the eight solutions for the normal

mass hierarchy and m0 = 0.001 eV.

3.4 Numerical results

Figures 6 and 7 show the stability measure Q for small and large m0 and normal/inverted

mass hierarchy. For small m0, the transition from the large µ to the small µ regime appears

for larger values of µ, in accordance with eqs. (3.10) and (3.16). In all four scenarios, the

solutions are unstable in the regime of small µ, which is due to the cancellation between

type I and type II contributions to the mass matrix of light neutrinos. In addition, the

solutions where the smallest eigenvalue is dominated by type I seesaw in the large µ regime

(’±±−’), are unstable for large µ as well, since the lightest right-handed mass stays below

106 GeV in this limit and this generally leads to a large spread in the eigenvalues and to

instabilities, as explained in the previous sections. Examples of the eigenvalues in these

cases are given in figure 2. Analogously, the stability measure of the solutions ’± − +’

increases for vR/vL & 1020, since the smallest right-handed neutrino mass approaches its

asymptotic value of about 109 GeV, as can be seen in figures 4 and 5. A similar effect
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Figure 6: The stability measure Q as a function of vR/vL for m0 = 0.001 eV. The left (right)

panel corresponds to the normal (inverted) neutrino mass hierarchy.
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Figure 7: Same as in figure 6, but for m0 = 0.1 eV.

appears for the solution ’− + +’ at values vR/vL & 1024. The purely type II dominated

solution (’+++’) is the most stable one in almost all the cases. If one allows for a tuning

at a percent level, Q . 103, then the stability analysis favors the two solutions ’± + +’

with vR/vL & 1018 and the two solutions ’±− +’ with vR/vL ' 1020.

It should be noted that the qualitative behavior of the stability measure Q depends

mostly on the eigenvalues of the Yukawa coupling matrix y and the neutrino mass scale

m0. On the other hand, the mixing in y and additional CP-violating Majorana phases

influence the results only marginally.

4. Leptogenesis

In this section, we present our analysis of leptogenesis and its implications for the discrim-

ination among the eight allowed solutions for g. Our analysis is based on the results of
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refs. [29, 30].

Assuming that the lightest of the right-handed neutrinos is separated from the other

two as well as from the Higgs triplets by a large mass gap, the baryon asymmetry arising

from leptogenesis can be written as

ηB ≡ nB

nγ
= η εN1

. (4.1)

The observed value of the baryon asymmetry is ηB = (6.1± 0.2)× 10−10 [31]. In eq. (4.1),

η is the so-called efficiency factor that takes into account the initial density of right-handed

neutrinos, the deviation from equilibrium in their decay and washout effects, while εN1

denotes the lepton asymmetry produced in the decay of the lightest right-handed neutrino.

For the decay of the ith right-handed neutrino, it is defined as

εNi
=

Γ(Ni → l H) − Γ(Ni → l̄ H∗)

Γ(Ni → l H) + Γ(Ni → l̄ H∗)
. (4.2)

If the two lightest right-handed neutrinos have similar masses, eq. (4.1) is generalized

to

ηB = η1 εN1
+ η2 εN2

. (4.3)

The coefficients ηi mostly depend on the effective neutrino masses, defined as

m̃i =
v2 (ŷ†ŷ)ii

2mNi

. (4.4)

Here and below, the hat indicates that the matrices are evaluated in the basis where the

triplet Yukawa coupling matrix g is diagonal with real and positive eigenvalues. In the case

of quasi-degenerate right-handed neutrinos, mN1
' mN2

, and nearly coinciding effective

masses m̃1 and m̃2, an order-of-magnitude estimate of the washout coefficients gives [32]

ηi '
1

200

(

10−3 eV

m̃i

)

. (4.5)

However, deviations from the condition m̃1 ' m̃2 can lead to large corrections to this esti-

mate. In particular, a large effective mass m̃2 reduces the coefficient η1 close to the mass

degeneracy point, as is shown in figure 8. The results in ref. [32] have been obtained for

rather light and quasi-degenerate right-handed neutrinos, mN1
' mN2

∼ 1TeV. For hier-

archical right-handed neutrino masses mN1
¿ mN2

and the mass scale under consideration

in the present case, mN1
∼ 108 GeV, one finds

η1 = 1.45 × 10−2

(

10−3 eV

m̃1

)

, η2 ' 0 , (4.6)

and we will employ these values in the following. This result and figure 8 have been obtained

by solving the Boltzmann equations as suggested in ref. [32] and assuming thermal initial

abundance of right-handed neutrinos.

With the washout factors ηi at hand, the determination of the baryon asymmetry

requires only the knowledge of the CP-violating decay asymmetries of the right-handed

– 12 –
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neutrinos εNi
. In the case when the low-energy limit of the theory is the Standard Model,

εN1
is given by [30]

εN1
= εI

N1
+ εII

N1
, (4.7)

εI
N1

=
1

8π

∑

j 6=1

Im[(ŷ†ŷ)21j ]

(ŷ†ŷ)11

√
xj

(

2 − xj

1 − xj
− (1 + xj) ln

xj + 1

xj

)

, (4.8)

εII
N1

=
3

8π
ĝ11µ

Im[(ŷ† ĝŷ∗)11]

(ŷ†ŷ)11
z

(

1 − z ln
z + 1

z

)

, (4.9)

and analogous formulas hold for εN2
. Here z = m2

∆/m2
N1

, and xj is defined as the ratio of

the squared right-handed neutrino masses:

xj =
ĝ2
jj

ĝ2
11

. (4.10)

In the following, we discuss only the limit of a very heavy SU(2)L Higgs triplet, z → ∞,

so that

εII
N1

→ 3

16π
ĝ11µ

Im[(ŷ† ĝŷ∗)11]

(ŷ†ŷ)11
. (4.11)

In the limit of a strong hierarchy in the right-handed sector, xj À 1, the first contribution

in eq. (4.7) can be rewritten as

εI
N1

→ − 1

8π

∑

j 6=1

Im[(ŷ†ŷ)21j ]

(ŷ†ŷ)11

3

2
√

xj
= − 3

16π
ĝ11

Im[(ŷ† ŷĝ−1ŷT ŷ∗)11]

(ŷ†ŷ)11
, (4.12)

so that

εN1
= εI

N1
+ εII

N1
→ 3

16π
ĝ11µ

Im[(ŷ† m̂ν ŷ
∗)11]

(ŷ†ŷ)11
. (4.13)

However, even in this limit, this approximation can lead to large deviations from the exact

result of eqs. (4.7)–(4.9). Consider e.g. the regime of small µ, where type I and type

II seesaw contributions almost cancel each other in the expression for the light neutrino

– 13 –



J
H
E
P
0
4
(
2
0
0
7
)
0
2
2

10
19

10
20

10
-3

10
-2

10
-1

m
1 [

eV
]

10
19

10
2010

-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

ε N
1

Exact
Approximation

10
19

10
20

v
R
/v

L

10
-3

10
-2

10
-1

m
2 [

eV
]

10
19

10
20

v
R
/v

L

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

ε N
2

~
~

Figure 9: The upper (lower) panels show the effective neutrino mass m̃1/eV (m̃2/eV) and the

asymmetry εN1
(εN2

) as functions of vR/vL for the solution ’+−+’. The dashed curves in the right

panels correspond to the approximation in eq. (4.13), while the solid curves represent the exact

result. The step-like behavior of m̃1 and m̃2 is due to the level crossing. Inverted mass hierarchy,

m0 = 0.001 eV.

mass matrix. In this case, even a small correction to the coefficient of the asymmetry εI
N1

leads to an incomplete cancellation and to large errors in the approximation of eq. (4.13).

This effect is also partially present at intermediate values of µ. In addition, close to

the mass degeneracy (xj ' 1), a resonant feature is expected in εI
N1

, which can lead to

successful leptogenesis even at a TeV scale [32]. This is demonstrated in figure 9, where

the asymmetries εN1
and εN2

produced in the decays of the two lightest right-handed

neutrinos and the corresponding effective mass parameters m̃1 and m̃2 are plotted. The

results show sizable deviations from the approximation (4.13), even outside the resonant

enhancement region. The corresponding baryon-to-photon ratio is shown in figure 10. In

addition, this figure shows the baryon-to-photon ratio in the case of non-vanishing θ13

and the Dirac-type leptonic CP-violating phase δCP = 30◦. The resonant behavior is less

distinct for larger values of θ13, which can be traced back to the fact that the two lightest

right-handed neutrinos never become exactly degenerate in mass in this case. On the other

hand, the Dirac-type phase constitutes an additional source of CP violation in the case of

non-vanishing θ13, leading to an enhancement of εN1
below the mass degeneracy point for
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below the observed value.

smaller values of θ13, and thus, widening the vR/vL region where successful leptogenesis is

possible (see the dashed curve in figure 10).

Thus, we find that viable leptogenesis is possible in this scenario if the ratio of the

VEVs is close to vR/vL ' (1÷2)×1019. Note that leptogenesis in the case of the left-right

symmetric seesaw mechanism was previously considered in a similar framework in ref. [15].

For the specific choice of the parameters made there, the washout processes were found to

be too strong to allow successful leptogenesis. However, for our choice of the parameters

with the inverted mass hierarchy in the light neutrino sector, the drop in the effective mass

m̃1 below the level crossing point of the two lightest right-handed neutrinos resolves this

issue. We notice that the use of the exact formulas (4.7-4.9) rather than the approximation

(4.13) is essential in this region.

It should be also noted that a similar effect of incomplete cancellation can appear if

the mass of the Higgs triplet is of the same order as the mass of the lightest right-handed

neutrino. In this case, the asymmetry εII
N1

is modified and the cancellation between type

I and type II contributions is incomplete as well, which in the small and intermediate

µ regimes can enhance the produced lepton asymmetry by several orders of magnitude

compared to the approximation in eq. (4.13).

With the parameters of figure 10, the lightest right-handed neutrino has a mass of

order mN1
' 5× 109 GeV, as can be seen in figure 4. Since thermal leptogenesis requires a

reheating temperature T & MN1
, this can potentially lead to a tension with bounds coming

from gravitino cosmology in supersymmetric theories, namely T . (107 ÷ 1010) GeV [33].

Thus, this possibility imposes constraints which are similar to those in the usual pure type

I seesaw scenario.

Another difference from the standard leptogenesis scenario is the appearance of the

phases contained in Pν , Pl, Pu, and Pd in the neutrino mass matrix mν and in the Dirac
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Yukawa coupling matrix y, which up to now have been set to zero in our discussion. Due

to these phases and an interplay between type I and type II contributions to the neutrino

mass matrix, leptogenesis is possible, in principle, even in the case of one leptonic flavor,

as will be demonstrated below. This case is quite similar to the framework with three left-

handed neutrinos and one right-handed neutrino discussed in ref. [34] (see also ref. [25]).

In the following, we will present some analytic results for the left-right symmetric one- and

two-flavor cases, before presenting numerical results for the three-flavor case.

In the one-flavor case, the light neutrino mass is given by

mν = g − y2

µg
(4.14)

and the lepton asymmetry produced in the decay of the heavy right-handed neutrino is

ε =
3

32π

Im[ŷ∗2m̂ν ]

m̃
. (4.15)

Once again, the hat indicates that y and mν are in the basis where g is real and positive.

It turns out that the most interesting regime is given by large values of µ and a relative

phase of π/4 between mν and y. In this case, only the solution dominated by the type II

term is relevant, since the type I contribution to ŷ∗2m̂ν is real and cannot generate any CP

asymmetry. Thus, we obtain

g ' mν , mN = mνµv2 , (4.16)

and

m̃ =
|y|2 v2

2mN
=

|y|2
2mνµ

, (4.17)

ε =
3

16π
m2

νµ =
3

16π

mνmN

v2
, (4.18)

ηB = 1.7 × 10−6 eV
m3

νµ
2

|y|2 = 1.7 × 10−6 eV
mνm

2
N

|y|2 v4
. (4.19)

Thus, it is possible to reproduce the observed baryon asymmetry e.g. with the values

|y| = 10−4 , mν = 0.1 eV , µ = 6.0 × 10−5 eV−2 , (4.20)

which leads to

m̃ = 8.3 × 10−4 eV , mN = 1.8 × 108 GeV . (4.21)

The situation, however, is more complicated in scenarios with more than one lepton

flavor. For instance, mixing could give large contributions to m̃1, thereby enhancing the

washout. On the other hand, it can also lead to additional sources of CP violation, which

might improve the prospects for successful leptogenesis in realistic models with several

flavors. Consider, for example, the situation when the third right-handed neutrino is much

heavier than the other two and the mixing with the third flavor in the right-handed sector

is suppressed. A novel aspect of this effective two-flavor case is that large mixing and
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resonant amplification of the lepton asymmetries due to the level crossing of right-handed

neutrinos can enhance leptogenesis. These effects are similar to those discussed above in

the full three-flavor framework. We will study the regime with a large hierarchy between

the two lightest right-handed neutrinos, which allows a simple analytic approach. As a

toy example, we consider the following scenario: We assume maximal mixing in the light

neutrino sector and one complex phase in Pl, which can be moved into the Yukawa coupling

matrix y by rephasing the electron neutrino field. Thus, the neutrino mass matrix is taken

to have the form

mν =

(

e2iκ m̄ eiκ δm

eiκ δm m̄

)

(4.22)

with δm ¿ m̄. The parameters m̄ and δm can be determined from the mass of the lightest

active neutrino m0 and ∆m2
21:

m̄ ' m0, δm ' ∆m2
21

4m0
. (4.23)

Numerical analysis indicates that the most interesting region in the parameter space cor-

responds to the situation when the smaller eigenvalue of g is in the large µ regime, while

the larger eigenvalue is in the small µ regime, i.e.

4 y2
1

m̄2
¿ µ ¿ 4 y2

2

m̄2
, (4.24)

and we will assume this to hold in the present example. In this case, two solutions for g

are, to first order in λ, given by the ansatz3

g = U †
(

m̄ 0

0 ± y2√
µ + m̄

2

)

U∗, U =

(

e−iκ λe−i(φ+κ)

−λeiφ 1

)

(4.25)

with

λ = ∓δm
√

µ

y2
, (4.26)

sin(φ + κ) ' ∓ sin(2κ)
y1

m̄
√

µ
, (4.27)

and thus, we find

m̃1 =
y2
1 + y2

2λ
2

2m̄µ
=

y2
1 + δm2µ

2m̄µ
, (4.28)

εN1
=

3

32πm̃1

[

sin(2φ + 2κ) m̄ δm2µ + sin(4κ)m̄y2
1

]

. (4.29)

The second term in εN1
essentially coincides with the corresponding expression in the one-

flavor case. Hence, in this case, it is possible to generate a sufficient lepton asymmetry in

3The other two solutions do not lead to successful leptogenesis.
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exactly the same way as in the one-flavor case as long as the contribution from mixing to

m̃1 does not lead to a strong washout. The latter condition reads

δm2

2m̄
' (∆m2

21)
2

32m3
0

. 10−3 eV , (4.30)

which is easily satisfied if m0 > 10−3 eV. It is interesting to note that for κ = π/8 and

quasi-degenerate neutrino masses, the obtained asymmetry εN1
saturates the upper limit

obtained in ref. [30].

But even in the case κ ' π/4, when the second term in the expression for εN1
in

eq. (4.29) is suppressed, the first term can lead to viable leptogenesis. The corresponding

contribution to ηB takes its largest value when δm2 = y2
1/µ, so that eqs. (4.28) and (4.29)

become

m̃1 =
y2
1

m̄µ
, (4.31)

εN1
=

3

16π
y1m̄

√
µ. (4.32)

In this case, ηB is smaller than it is in the one-flavor case only by a factor

y1

2m̄
√

µ
=

1

2

√

m̃1

m̄
' 0.1. (4.33)

It should be noted that the baryon asymmetry increases with the parameter µ, so that,

depending on the Yukawa couplings, saturation of the upper limit on µ in eq. (4.24) might

be necessary, which can lead to deviations from our analytic results.

Thus, in the two-flavor case, two different sources of leptogenesis exist: The first source

is similar to that in the one-flavor case, which is related to the type II seesaw term and

is sensitive to the high-energy CP-violating phases, while the second source results from

mixing effects and has no analogue in the one-generation case.

In the three-flavor framework, sources of both types are, in general, present as well,

but mixing with the third flavor can further increase m̃1. Figure 11 shows the baryon-to-

photon ratio ηB when an additional phase is attributed to the electron neutrino, as in the

two-flavor example of eq. (4.22). We choose the phase κ = π/4 (κ = π/8), so that the

source similar to the first (second) term in eq. (4.29) gives the largest contribution to the

baryon asymmetry. Our numerical results indicate that, similarly to the two-flavor case, the

upper bound on the decay asymmetry found in ref. [30] can be saturated. The mass of the

lightest right-handed neutrino that is required to reproduce the observed baryon asymmetry

is mN1
& 1.4× 109 GeV (mN1

& 2.5× 108 GeV). These bounds can be relaxed by choosing

Yukawa couplings different from those of the up-type quarks. With an appropriate choice,

the results for the four solutions of the type ’± ± +’ agree with the analytic predictions

of the two-flavor analysis presented in this section. Notice that the results in the two-

flavor case in eqs. (4.28) and (4.29) do not depend on y2 as long as the constraint (4.24)

is fulfilled. Likewise, we observe in the numerical analysis of the three-flavor case that in

this limit leptogenesis is not very sensitive to the two largest eigenvalues y2 and y3. This
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the observed value. Inverted mass hierarchy, m0 = 0.1 eV.

± + + ±− + ±±−
Stability vR/vL > 1018 vR/vL ' 1020 disfavored

Leptogenesis vR/vL > 1018 vR/vL > 1018 excluded

Gravitinos vR/vL < 1021 unconstrained unconstrained

Table 1: The allowed regions of the parameter vR/vL for the eight different types of solutions.

is, however, a consequence of the fact that the mixing in the 1-3 sector of the Dirac-type

Yukawa coupling y is small in our framework according to eq. (2.6). If this mixing is sizable,

θq
13 & 5◦, and depending on the other parameters determining the Yukawa coupling y and

the neutrino mixing matrix UPMNS, leptogenesis might be suppressed, mainly due to a large

contribution to the effective mass parameter m̃1 from the eigenvalue y3 and the resulting

increased washout.

Thus, we conclude that successful leptogenesis is possible for four out of the eight

solutions provided that the value of the electron-type Majorana phase is in an appropriate

range. For the other four solutions, leptogenesis is not viable, as was first pointed out

in ref. [15]. The reason for this is that, as long as the Dirac Yukawa coupling matrix is

chosen to coincide with that of the up-type quarks, the mass of the lightest right-handed

neutrino never exceeds 106 GeV and no level crossings occur. We note that in the left-right

symmetric case with type I+II seesaw mechanism the bounds on the mass of the lightest

right-handed neutrino can be slightly relaxed compared to those in the pure type I case

which, for right-handed neutrinos with thermal initial abundance and hierarchical masses,

requires mN1
& 5 × 108 GeV [35 – 37].

5. Summary and conclusions

We have analyzed the left-right symmetric type I+II seesaw mechanism with a hierarchical
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Dirac mass term motivated by GUTs. It was previously shown that a reconstruction of the

mass matrix of heavy right-handed neutrinos in this framework produces eight solutions

which result in exactly the same low-energy phenomenology. Our goal was to discriminate

among these solutions using their stability properties and leptogenesis as additional criteria.

As a measure of the stability, we have chosen the parameter Q which quantifies the degree

of fine-tuning necessary to obtain a given mass matrix of light neutrinos and was defined

in eq. (3.1). For three lepton generations, no fine-tuning corresponds to Q ∼ 10. We have

selected the value Q = 103, which corresponds to a fine-tuning at the percent level, as

a maximal allowed value. The leptogenesis criterion we used was the ability of a given

solution to reproduce the observed baryon asymmetry of the Universe.

Our results complement the results of the leptogenesis analysis performed in ref. [15]

in the following aspects. In the case without additional Majorana phases, we obtain, in

accordance with ref. [15], that a sizable decay asymmetry εN1
is possible close to the mass

degeneracy of the two lightest right-handed neutrinos. However, while for the specific

parameters used in ref. [15] the washout is too large to allow viable leptogenesis, we find

that assuming the inverted mass hierarchy for the light neutrinos resolves the problem, as

shown in figure 9. Similarly, in the cases with additional CP-violating Majorana phases we

found that for certain solutions the choice of the parameters made in ref. [15] leads either

to a strong washout (solutions ’±−+’), or to a violation of the gravitino bound (solutions

’± + +’). In section 4, we presented a systematic study showing that those problems can

be solved for the four solutions ’±±+’ if the value of the of electron-type Majorana phase

is in the appropriate range. In particular, the upper bound on the decay asymmetry for

the type I+II seesaw model found in ref. [30] can be saturated for a certain choice of the

parameters. This is illustrated by the analytic results for the two-flavor case in eqs. (4.28)

and (4.29) and the numerical results for the three-flavor case in figure 11. We would like to

emphasize that if the Dirac-type Yukawa coupling matrix y is characterized by hierarchical

eigenvalues and rather small mixing, successful leptogenesis is quite a generic feature of

the left-right symmetric seesaw models.

Our findings are summarized in table 1. One can observe that the stability criterion

disfavors the four solutions of the type ’± ± −’ and restricts the solutions of the type

’± − +’ to the region of the parameter space where vR/vL ' 1020. The remaining two

solutions of the type ’± + +’ are stable, provided that vR/vL & 1018. We found that

successful leptogenesis is possible for the four solution of the type ’± ± +’ as long as

vR/vL & 1018. This possibility requires the existence of additional Majorana-type phases

which are absent in the pure type I seesaw framework. Further constraints come from

the potentially dangerous overproduction of gravitinos in supersymmetric theories, giving

rise to an upper bound on the lightest right-handed neutrino mass. For our choice of the

Yukawa couplings, y = yu, only the solutions of the type ’± + +’ are affected by this

constraint, which leads to the requirement vR/vL . 1021. For the other six solutions,

the smallest right-handed neutrino mass is always below 1010 GeV, so that these solutions

are not constrained by this criterion. In the cases when the middle eigenvalue of y is

chosen to be significantly larger than the one in our framework, y2 & 10−2, the constraint

vR/vL . 1021 would also apply to the two solutions of the form ’± − +’. On the other

– 20 –



J
H
E
P
0
4
(
2
0
0
7
)
0
2
2

hand, a very small middle eigenvalue, y2 . 5× 10−4, would render leptogenesis impossible

for these two solutions, since the decay asymmetry would be too small due to the small

mass of the lightest right-handed neutrino.

Thus, we have shown, within the chosen framework, that the stability and leptogenesis

criteria partially lift the eight-fold degeneracy among the solutions for the mass matrix of

heavy right-handed neutrinos in the left-right symmetric type I+II seesaw.
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